Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2301687

ABSTRACT

Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

2.
J Chem Inf Model ; 61(12): 6094-6106, 2021 12 27.
Article in English | MEDLINE | ID: covidwho-2278963

ABSTRACT

SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
3.
BMC Med ; 20(1): 129, 2022 03 29.
Article in English | MEDLINE | ID: covidwho-1833313

ABSTRACT

BACKGROUND: SARS-CoV-2 infection portends a broad range of outcomes, from a majority of asymptomatic cases to a lethal disease. Robust correlates of severe COVID-19 include old age, male sex, poverty, and co-morbidities such as obesity, diabetes, and cardiovascular disease. A precise knowledge of the molecular and biological mechanisms that may explain the association of severe disease with male sex is still lacking. Here, we analyzed the relationship of serum testosterone levels and the immune cell skewing with disease severity in male COVID-19 patients. METHODS: Biochemical and hematological parameters of admission samples in 497 hospitalized male and female COVID-19 patients, analyzed for associations with outcome and sex. Longitudinal (in-hospital course) analyses of a subcohort of 114 male patients were analyzed for associations with outcome. Longitudinal analyses of immune populations by flow cytometry in 24 male patients were studied for associations with outcome. RESULTS: We have found quantitative differences in biochemical predictors of disease outcome in male vs. female patients. Longitudinal analyses in a subcohort of male COVID-19 patients identified serum testosterone trajectories as the strongest predictor of survival (AUC of ROC = 92.8%, p < 0.0001) in these patients among all biochemical parameters studied, including single-point admission serum testosterone values. In lethal cases, longitudinal determinations of serum luteinizing hormone (LH) and androstenedione levels did not follow physiological feedback patterns. Failure to reinstate physiological testosterone levels was associated with evidence of impaired T helper differentiation and augmented circulating classical monocytes. CONCLUSIONS: Recovery or failure to reinstate testosterone levels is strongly associated with survival or death, respectively, from COVID-19 in male patients. Our data suggest an early inhibition of the central LH-androgen biosynthesis axis in a majority of patients, followed by full recovery in survivors or a peripheral failure in lethal cases. These observations are suggestive of a significant role of testosterone status in the immune responses to COVID-19 and warrant future experimental explorations of mechanistic relationships between testosterone status and SARS-CoV-2 infection outcomes, with potential prophylactic or therapeutic implications.


Subject(s)
COVID-19 , Androgens , Female , Humans , Luteinizing Hormone/metabolism , Male , SARS-CoV-2 , Testosterone
4.
High Alt Med Biol ; 22(2): 209-224, 2021 06.
Article in English | MEDLINE | ID: covidwho-1155749

ABSTRACT

Thomson, Timothy M., Fresia Casas, Harold Andre Guerrero, Rómulo Figueroa-Mujíca, Francisco C. Villafuerte, and Claudia Machicado. Potential protective effect from COVID-19 conferred by altitude: A longitudinal analysis in Peru during full lockdown. High Alt Med Biol. 22: 209-224, 2021. Background: The COVID-19 pandemic had a delayed onset in America. Despite the time advantage for the implementation of preventative measures to contain its spread, the pandemic followed growth rates that paralleled those observed before in Europe. Objectives: To analyze the temporal and geographical distribution of the COVID-19 pandemic at district-level in Perú during the full lockdown period in 2020. Methods: Analysis of publicly available data sets, stratified by altitude and geographical localization. Correlation tests of COVID-19 case and death rates to population prevalence of comorbidities. Results: We observe a strong protective effect of altitude from COVID-19 mortality in populations located above 2,500 m. We provide evidence that internal migration through a specific land route is a significant factor progressively overriding the protection from COVID-19 afforded by high altitude. This protection is independent of poverty indexes and is inversely correlated with the prevalence of hypertension and hypercholesterolemia. Discussion: Long-term adaptation to residency at high altitude may be the third general protective factor from COVID-19 severity and death, after young age and female sex. Multisystemic adaptive traits or acclimatization processes in response to chronic hypobaric hypoxia may explain the apparent protective effect of high altitude from COVID-19 death.


Subject(s)
Altitude Sickness , COVID-19 , Altitude , Communicable Disease Control , Female , Humans , Pandemics , Peru/epidemiology , SARS-CoV-2
5.
Br J Haematol ; 190(4): 520-524, 2020 08.
Article in English | MEDLINE | ID: covidwho-707353

ABSTRACT

Coronavirus disease 2019 (COVID-19) is frequently associated with severe systemic consequences, including vasculitis, a hyperinflammatory state and hypercoagulation. The mechanisms leading to these life-threatening abnormalities are multifactorial. Based on the analysis of publicly available interactomes, we propose that severe acute respiratory syndrome coronavirus-2 infection directly causes a deficiency in C1 esterase inhibitor, a pathogen-specific mechanism that may help explain significant systemic abnormalities in patients with COVID-19.


Subject(s)
COVID-19/metabolism , Complement C1 Inhibitor Protein/metabolism , SARS-CoV-2/metabolism , COVID-19/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL